首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   9篇
  2021年   6篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   8篇
  2012年   5篇
  2011年   5篇
  2010年   1篇
  2009年   4篇
  2008年   6篇
  2007年   6篇
  2006年   7篇
  2005年   7篇
  2003年   3篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   7篇
  1996年   5篇
  1994年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有99条查询结果,搜索用时 78 毫秒
31.
This study experimentally tested the impact of peat bog habitat loss and isolation on the invertebrate community associated with Sporadanthus ferrugineus (Restionaceae), a dominant indigenous plant species in peat bogs. Potted S. ferrugineus plants were exposed to invertebrates at various distances up to 800 m from an intact habitat (the source population) over 18 weeks. Invertebrates rapidly colonized the experimental plants, with all major orders and trophic groups present on S. ferrugineus within 6 weeks. However, with increasing distance away from the undisturbed habitat, there was a significant decrease in total species richness and abundance of invertebrates associated with the potted plants. Of the total taxa captured, only 38% were found on potted S. ferrugineus plants at 800 m compared with 62% found on potted plants 30 m from the intact peat bog. Predator species richness and the predator–prey ratio changed significantly with time available for colonization of potted plants but, more importantly, prey (herbivores and detritivores) and predator (including parasitoids) species richness, as well as the predator–prey ratio, declined significantly with increasing isolation from the peat bog. Thus, the degree of isolation of restoration areas from undisturbed habitat has a major impact on the rate and patterns of recovery in invertebrate community structure. The current recommended practice of restoring the mined area by establishing raised "habitat islands" 30 m apart should result in colonization by most invertebrates associated with S. ferrugineus , but only if the restoration islands are placed as stepping stones outward from existing areas of intact habitat.  相似文献   
32.
Different components of global environmental change are often studied and managed independently, but mounting evidence points towards complex non-additive interaction effects between drivers of native species decline. Using the example of interactions between land-use change and biotic exchange, we develop an interpretive framework that will enable global change researchers to identify and discriminate between major interaction pathways. We formalise a distinction between numerically mediated versus functionally moderated causal pathways. Despite superficial similarity of their effects, numerical and functional pathways stem from fundamentally different mechanisms of action and have fundamentally different consequences for conservation management. Our framework is a first step toward building a better quantitative understanding of how interactions between drivers might mitigate or exacerbate the net effects of global environmental change on biotic communities in the future.  相似文献   
33.
Opportunistic fungal infections increase morbidity and mortality in COVID-19 patients monitored in intensive care units (ICU). As patients’ hospitalization days in the ICU and intubation period increase, opportunistic infections also increase, which prolongs hospital stay days and elevates costs. The study aimed to describe the profile of fungal infections and identify the risk factors associated with mortality in COVID-19 intensive care patients. The records of 627 patients hospitalized in ICU with the diagnosis of COVID-19 were investigated from electronic health records and hospitalization files. The demographic characteristics (age, gender), the number of ICU hospitalization days and mortality rates, APACHE II scores, accompanying diseases, antibiotic-steroid treatments taken during hospitalization, and microbiological results (blood, urine, tracheal aspirate samples) of the patients were recorded. Opportunistic fungal infection was detected in 32 patients (5.10%) of 627 patients monitored in ICU with a COVID-19 diagnosis. The average APACHE II score of the patients was 28 ± 6. While 25 of the patients (78.12%) died, seven (21.87%) were discharged from the ICU. Candida parapsilosis (43.7%) was the opportunistic fungal agent isolated from most blood samples taken from COVID-19 positive patients. The mortality rate of COVID-19 positive patients with candidemia was 80%. While two out of the three patients (66.6%) for whom fungi were grown from their tracheal aspirate died, one patient (33.3%) was transferred to the ward. Opportunistic fungal infections increase the mortality rate of COVID-19-positive patients. In addition to the risk factors that we cannot change, invasive procedures should be avoided, constant blood sugar regulation should be applied, and unnecessary antibiotics use should be avoided.  相似文献   
34.
Watts CH  Didham RK 《Oecologia》2006,148(1):61-69
This study examined the impact of wetland habitat loss and isolation on an insect–plant interaction, and the subsequent rate of recovery of the interaction following experimental habitat restoration. We compared herbivore colonisation rates and herbivory damage by ‘Batrachedra’ sp. (Lepidoptera: Coleophoridae) on experimentally placed potted Sporadanthus ferrugineus (Restionaceae) plants at increasing distances (up to 800 m) from an intact habitat (the source population). These tests showed that even a moderate degree of isolation (i.e. greater than 400 m) from the intact wetland habitat caused an almost complete collapse of the insect–plant interaction, at least in the short term. The number of eggs and larvae of colonising ‘Batrachedra’ sp., as well as average larval size and the proportion of S. ferrugineus stems damaged, all decreased logarithmically with increasing distance from the intact habitat, presumably due to dispersal limitation of the herbivore. Subsequently, to test whether the interaction can recover following habitat restoration, we surveyed herbivore colonisation rates and herbivory damage on naturally regenerated S. ferrugineus plants on experimentally restored ‘islands’ at increasing distances (up to 800 m) from an intact habitat. The rate of recovery of the interaction was surprisingly rapid (i.e. between 196 and 308 weeks). The degree of difference in the density of eggs and larvae, and in the proportion of stems damaged with increasing isolation from the intact wetland, gradually diminished over 196 weeks. After 308 weeks there was no significant difference in the insect–plant interaction between the intact wetland sites and any of the experimentally restored sites up to 800 m away. These results suggest that some insect–plant interactions can recover rapidly from habitat loss with restoration management.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   
35.
Suding et al. (2004) demonstrate how conceptual advances in alternative ecosystem states theory have led to a greater understanding of why degraded systems are often resilient to restoration management. In their review they pose one (of several) ‘outstanding’ questions (Box 3 in Suding et al. 2004 ): “Are there predictable characteristics that indicate when a system will follow a successional pathway and/or that indicate the presence or absence of alternative ecosystem states?” We suggest that the persistence of alternative stable states might be predicted from simple consideration of assembly rules for systems structured along a gradient of environmental adversity. We raise the hypothesis that strongly abiotically‐ or disturbance‐structured assemblages, with nonrandom trait under‐dispersion ( Weiher and Keddy 1995 ), are more likely to exhibit catastrophic phase shifts in community structure than assemblages which are weakly structured by environmental adversity.  相似文献   
36.
The main drivers of global environmental change (CO2 enrichment, nitrogen deposition, climate, biotic invasions and land use) cause extinctions and alter species distributions, and recent evidence shows that they exert pervasive impacts on various antagonistic and mutualistic interactions among species. In this review, we synthesize data from 688 published studies to show that these drivers often alter competitive interactions among plants and animals, exert multitrophic effects on the decomposer food web, increase intensity of pathogen infection, weaken mutualisms involving plants, and enhance herbivory while having variable effects on predation. A recurrent finding is that there is substantial variability among studies in both the magnitude and direction of effects of any given GEC driver on any given type of biotic interaction. Further, we show that higher order effects among multiple drivers acting simultaneously create challenges in predicting future responses to global environmental change, and that extrapolating these complex impacts across entire networks of species interactions yields unanticipated effects on ecosystems. Finally, we conclude that in order to reliably predict the effects of GEC on community and ecosystem processes, the greatest single challenge will be to determine how biotic and abiotic context alters the direction and magnitude of GEC effects on biotic interactions.  相似文献   
37.
The phylogenetic potential of entire 26S rDNA sequences in plants   总被引:6,自引:1,他引:5  
18S ribosomal RNA genes are the most widely used nuclear sequences for phylogeny reconstruction at higher taxonomic levels in plants. However, due to a conservative rate of evolution, 18S rDNA alone sometimes provides too few phylogenetically informative characters to resolve relationships adequately. Previous studies using partial sequences have suggested the potential of 26S or large-subunit (LSU) rDNA for phylogeny retrieval at taxonomic levels comparable to those investigated with 18S rDNA. Here we explore the patterns of molecular evolution of entire 26S rDNA sequences and their impact on phylogeny retrieval. We present a protocol for PCR amplification and sequencing of entire (approximately 3.4 kb) 26S rDNA sequences as single amplicons, as well as primers that can be used for amplification and sequencing. These primers proved useful in angiosperms and Gnetales and likely have broader applicability. With these protocols and primers, entire 26S rDNA sequences were generated for a diverse array of 15 seed plants, including basal eudicots, monocots, and higher eudicots, plus two representatives of Gnetales. Comparisons of sequence dissimilarity indicate that expansion segments (or divergence domains) evolve 6.4 to 10.2 times as fast as conserved core regions of 26S rDNA sequences in plants. Additional comparisons indicate that 26S rDNA evolves 1.6 to 2.2 times as fast as and provides 3.3 times as many phylogenetically informative characters as 18S rDNA; compared to the chloroplast gene rbcL, 26S rDNA evolves at 0.44 to 1.0 times its rate and provides 2.0 times as many phylogenetically informative characters. Expansion segment sequences analyzed here evolve 1.2 to 3.0 times faster than rbcL, providing 1.5 times the number of informative characters. Plant expansion segments have a pattern of evolution distinct from that found in animals, exhibiting less cryptic sequence simplicity, a lower frequency of insertion and deletion, and greater phylogenetic potential.   相似文献   
38.
A first analysis of the stability of trophic structure following tropical forest fragmentation was performed in an experimentally fragmented tropical forest landscape in Central Amazonia. A taxonomically and trophically diverse assemblage of 993 species of beetles was sampled from 920 m2 of leaf litter at 46 sites varying in distance from forest edge and fragment area. Beetle density increased significantly towards the forest edge and showed non-linear changes with fragment area, due to the influx of numerous disturbed-area species into 10 ha and 1 ha fragments. There was a marked change in species composition with both decreasing distance from forest edge and decreasing fragment area, but surprisingly this change in composition was not accompanied by a change in species richness. Rarefied species richness did not vary significantly across any of the sites, indicating that local extinctions of deep forest species were balanced by equivalent colonization rates of disturbed-area species. The change in species composition with fragmentation was non-random across trophic groups. Proportions of predator species and xylophage species changed significantly with distance from forest edge, but no area-dependent changes in proportions of species in trophic groups were observed. Trophic structure was also analysed with respect to proportions of abundance in six trophic groups. Proportions of abundance of all trophic groups except xylomycetophages changed markedly with respect to both distance from forest edge and fragment area. Local extinction probabilities calculated for individual beetle species supported theoretical predictions of the differential susceptibility of higher trophic levels to extinction, and of changes in trophic structure following forest fragmentation. To reduce random effects due to sampling error, only abundant species (n = 46) were analysed for extinction probabilities, as defined by absence from samples. Of these common species, 27% had significantly higher probabilities of local extinction following fragmentation. The majority of these species were predators; 42% of all abundant predator species were significantly more likely to be absent from samples in forest fragments than in undisturbed forest. These figures are regarded as minimum estimates for the entire beetle assemblage because rarer species will inevitably have higher extinction probabilities. Absolute loss of biodiversity will affect ecosystem process rates, but the differential loss of species from trophic groups will have an even greater destabilizing effect on food web structure and ecosystem function.  相似文献   
39.

Background  

Inbreeding can slow population growth and elevate extinction risk. A small number of unrelated immigrants to an inbred population can substantially reduce inbreeding and improve fitness, but little attention has been paid to the sex-specific effects of immigrants on such "genetic rescue". We conducted two subsequent experiments to investigate demographic consequences of inbreeding and genetic rescue in guppies.  相似文献   
40.
Forest canopies support diverse assemblages of free-living mites. Recent studies suggest mite species complementarity between canopy and terrestrial soils is as high as 80–90%. However, confounding variation in habitat quality and resource patchiness between ground and canopy has not been controlled in previous comparative studies. We used experimental litter bags with standardized microhabitat structure and resource quality to contrast the colonization dynamics of 129 mite species utilizing needle accumulations on the ground vs in the canopy of Abies amabilis trees in a temperate montane forest in Canada. Mite abundance and species richness per litter bag were five to eight times greater on the ground than in the canopy, and composition differed markedly at family-, genus-, and species-level. Seventy-seven species (57%) were restricted to either ground or canopy litter bags, but many of these species were rare (n<5 individuals). Of 49 ‘common’ species, 30.6% were entirely restricted to one habitat, which is considerably lower than most published estimates. In total, 87.5% of canopy specialists had rare vagrants on the ground, whereas only 51.9% of ground specialists had rare vagrants in the canopy. Canonical correspondence analysis of mite community structure showed high species turnover through time and a high degree of specialization for early-, mid-, and late-successional stages of litter decomposition, in both ground and canopy mites. In addition, distinct assemblages of ground-specialist mites dominated each elevation (800, 1000, and 1200 m), whereas few canopy-specialist mites had defined elevational preferences. This suggests that canopy mites may have greater tolerance for wide variation in environmental conditions than soil mites. The degree of species turnover between adjacent mountains also differed markedly, with 46.5% turnover of ground species, but 63.4% turnover of canopy species between the two montane areas. While ground and canopy assemblages are similar in total biodiversity, it appears that local mite richness (alpha diversity) is higher on the ground, whereas species turnover between sites (beta diversity) is higher in the canopy. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号